Stoichiometry mass \rightleftharpoons mole Conversions

General Read Map for Stoichiometry

Molar Mass

Calculate the molar mass of water $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& 1 \text { a town of } 0 \times \frac{16.00 \text { amu }}{1 \text { atom } 0}=\frac{+16.00 \text { amu }}{18.016 \mathrm{amv}} \\
&=18.02 \text { amu for } 1 \mathrm{H}_{2} \mathrm{O} \\
& \text { molecule }
\end{aligned}
$$

1 mole packages

2 mole $H \times \frac{1.008 \mathrm{gH}}{1 \text { mole } H}=2.01169$

$$
\begin{aligned}
& 1 \text { mole } 0 \times \frac{16.00 \mathrm{~g} 0}{1 \text { mole } 0}= \frac{116.00 \mathrm{~g}}{18.016} \\
& 18.02 \mathrm{~g} / \text { mole } \mathrm{H}_{2} \mathrm{O} \mathrm{O}
\end{aligned}
$$

$$
18.02 \mathrm{~g}=1 \text { mole } \mathrm{H}_{2} \mathrm{O}=6.02 \times 10^{23} \text { molecules } \mathrm{H}_{2} \mathrm{O}
$$

molarmass of Glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\frac{\text { enact }}{6 \text { mole } C} \times \frac{12.01 \mathrm{~g}}{1 \text { mole } \mathrm{C}}=72.06$
12 mole $H \times \frac{1.008 y}{1 \text { mole } H}=12.096$
6 mole $0 \times \frac{16^{4} .00 \mathrm{~g}}{1 \text { mole } 0}=\frac{+96.001}{180.05}$

$$
180.05 \mathrm{~g} / \text { mole } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

Activity 13 - Measuring Mass: A Means of Counting ${ }^{1}$

Goals

- Properly use a top loading balance to determine the mass of a sample.
- Use molar masses to connect the measured mass of a sample to the number of particles in that sample.
- Use safe lab techniques to characterize matter.
- Apply principles to samples of both pure substances and mixtures.
- Apply dimensional analysis techniques to count small particles such as atoms and molecules.

Pre-Lab Lecture Questions. Answer these questions on a separate sheet using complete sentences.

1. What is the difference between weight and mass? How do you "properly" use a balance in the laboratory?
2. What determines the number of significant figures/digits in a measurement?
3. What determines the number of significant figures/digits in a calculation?
4. What is molar mass?
5. What is Avogadro's number?
6. Write as many different conversion factors as you can using the chemical formula of water, the molar mass of water, the definition of a mole, and Avogadro's number.
7. Read through the experimental procedure and classify substances as either pure or a mixture.

Concepts to Review

Classification of Matter: What is a pure substance (element, atom, molecule, compound?) and what is a mixture?
Significant Figures/Digits
Chemical Formulas
Unit Conversion Methods (Dimensional Analysis describing Atoms, Molecules and Ions)

Introduction

Our world contains groupings of objects everywhere: a dozen eggs, a pair of socks, a gross of pencils. These collections are convenient "packets" of individual pieces. The individual "pieces" of pure substances can be described by chemical formulas, e.g., $\mathrm{H}_{2} \mathrm{O}$ is the chemical formula for water. This formula indicates that each molecule of water consists of two atoms of hydrogen combined with one atom of oxygen. The mass of this molecule is the sum of the masses of the atoms combined to form this compound. We cannot directly measure the mass of one molecule of water but we can recognize its relative mass and use a convenient "packet" of molecules to describe real world quantities. The mole is the chemist's standard collection of particles and is defined as the amount of substance in a sample that contains as many units as there are atoms in exactly $\mathbf{1 2}$ grams of carbon-12. That number of carbon12 atoms is $\mathbf{6 . 0 2 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ and is known as Avogadro's number.

1 mole carbon atoms $=12.0 \mathrm{~g} \mathrm{C}=6.022 \times 10^{23}$ atoms C
1 mole $\mathrm{H}_{2} \mathrm{O}=2(1.008 \mathrm{~g} \mathrm{H})+1(16.00 \mathrm{~g} \mathrm{O})=18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=6.022 \times 10^{23}$ molecules of water
Using these relationships, any mass of water can be converted into a number of molecules:

[^0]$100.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{6.022 \times 10^{23}}{1 \mathrm{~mol}}\right)=3.34 \times 10^{24}$ molecules $\mathrm{H}_{2} \mathrm{O}$
In this lab you will measure amounts of substances. You will then calculate the number of particles contained in the sample, numbers that cannot be counted-only calculated.

Safety

Act in accordance with the laboratory safety rules of Cabrillo College. Wear safety glasses at all times. Avoid contact with all chemical reagents and dispose of reactions using an appropriate waste container.

Materials:

Reagent Central solutions include:
Sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$, sodium chloride (NaCl), chalk (calcium carbonate)
Check out a sample containing:
Glass slides (assumed to be pure silicon dioxide), polystyrene peanuts, sulfur, fluorite, hematite, (or other minerals as provided by stockroom)
Equipment: Balance Plastic spoons

Experimental Procedure

1. Using a weighing paper or boat and balance, "weigh" one level teaspoon of sodium chloride and record its mass in your laboratory notebook and/or Table 1. This mass is the mass of your "sample." Using the same balance, measure the mass of one teaspoon of water and one of sucrose.
2. "Weigh" a glass slide, and record its mass in your laboratory notebook and/or Table 2. Repeat for the piece of chalk and a polystyrene peanut.
3. "Weigh" a piece of sulfur, and record its mass in your laboratory notebook and/or Table 3. Repeat for a piece of fluorite and a piece of hematite.
4. A nickel coin is a mixture of metals called an alloy. It consists of 75% copper and 25% nickel. Design and carry out an experiment to find out how many nickel atoms there are in one 5 -cent piece. Record your experiment procedure in your laboratory notebook and/or in Table 4. Show all your calculations and give your final answer with the correct number of significant figures and in scientific notation.

Chemical Calculations

For each of the masses recorded:

1. Use the formula (see below) to determine the molar mass in units of $\mathrm{g} / \mathrm{mol}$.
2. Use the molar mass to determine the number of moles.
3. Use the number of moles of the substance and molar ratios to calculate the moles of each element.
4. Use the moles of each element in each sample along with Avogadro's number to calculate the number of atoms of each element.
5. Use the above calculations as a model to help you determine the number of nickel atoms in one 5cent piece.

Activity 13 - Measuring Mass: A Means of Counting

* Given Data to Complete

Name \qquad

Experimental Data and Calculations

1. Complete the following tables: Table 1. Counting Particles in Common Substances

Table 2. Counting Particles in Common Items.

Table 3. Counting Particles in Minerals.

Formula	Name	Sample Mass (g)	Molar Mass (g/mol)	Moles in sample	Moles each element in sample	Atoms each element in sample
$\begin{gathered} \mathrm{S}_{8} \\ \text { (molecule) } \end{gathered}$		$8.25 \mathrm{~g}$				
CaF_{2} (formula unit)	Fluorite	$9.87 \mathrm{~g}$				
$\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$	Hematite	$8.84 \mathrm{~g}$				

Table 4. Counting the Atoms of Nickel in a Nickel
Describe your experimental procedure:
Mass of nickel coin $=5.02 \mathrm{~g}$
ב

Show all the steps of your calculations and your final answer including the correct number and units:

Demonstration of Cakulations
From work sheet we are given 5.25 g sample NaCl
\Rightarrow Give name $\mathrm{NaCl}=$ Sodium Chloride
\Rightarrow Molar Mass in g/mol

$$
\begin{aligned}
& \text { Tolar mass in } \mathrm{g} / \text { mol } \\
& \text { Exact } \\
& 1 \text { mole } \mathrm{Na} \times \frac{22.99 \mathrm{~g}}{1 \text { mole } \mathrm{Na}}=22.99 \mathrm{~g} \\
& 1 \text { mole } \mathrm{Cl} \times \frac{35.45 \mathrm{~g}}{1 \text { mole } \mathrm{Cl}}=\frac{35.45 \mathrm{~g}}{58.44 \mathrm{~g}} \\
& =58.44 \mathrm{~g} / \text { mole } \mathrm{NaCl}
\end{aligned}
$$

\Rightarrow Calk Moles in Sample $(5.25 \mathrm{~g} \mathrm{NaCl})$
Road Map

$\mathrm{g} \mathrm{NaCl} \xrightarrow{5 \mathrm{SO}^{2 \times 2}}$ mole NaCl

$$
\begin{aligned}
\begin{aligned}
\mathrm{gNaCl} \rightarrow \text { mole } \\
5.25 \mathrm{gnaCl}
\end{aligned} \frac{1 \text { mole } \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}} & =0.0898357289528 \text { moles } \\
& =0.0898 \text { moles } \mathrm{NaCl}
\end{aligned}
$$

\Rightarrow moles Each element in 5.25 g NaCl
Road Map

mole Bridge Conversion factors

$$
\left.\begin{array}{l}
\text { Bridge Conversion factors } \\
1 \text { mole } \mathrm{NaCl}=1 \text { mole } \mathrm{Na} \\
1 \text { mande } \mathrm{NaCl}_{1}=1 \text { mole } \mathrm{Cl}
\end{array}\right\} \begin{aligned}
& \text { Subscripts car used } \\
& \text { as molar ratios to } \\
& \text { relate the whole } \\
& \text { to the part }
\end{aligned}
$$

2 Calculations
$\mathrm{g} \mathrm{NaCl} \rightarrow$ mole $\mathrm{NaCl} \longrightarrow$ mole Na
$\mathrm{g} \mathrm{NaCl} \rightarrow$ mole $\mathrm{HaCl} \rightarrow$ mote Cl

$$
\begin{aligned}
& =0.0898 \text { mole Cl }
\end{aligned}
$$

\Rightarrow atoms of each element in sample
Road Map

I NaIl \rightarrow mole NaCl \rightarrow mole Na \rightarrow atoms Na

$$
\begin{aligned}
& 5.25 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \text { mole WaC }}{58.44 \mathrm{~g} \mathrm{NaCl}} \times \frac{1 \text { mole } \mathrm{Na}}{1 \text { mole Nail }} \times \frac{6^{3} .02 \times 10^{23} \text { tons } \mathrm{Na}}{1 \text { mole Na }}= \\
& 5.25 \times 6.02 E 23 \div 58.44=5.40811088296 \underline{E} 22 \\
& \underset{\left(\times 10^{\circ}\right)}{ }=5.4 \frac{10 / 811028296 \times 10^{22}}{} \\
& =5.41 \times 10^{22} \text { atoms } \mathrm{Na} \text {. }
\end{aligned}
$$

$\mathrm{g} \mathrm{NaCl} \rightarrow$ mole $\mathrm{NaCl} \rightarrow$ mole $\mathrm{Cl} \rightarrow$ atoms Cl

$$
\begin{aligned}
& 5.408111 \times 10^{22} \\
& =5.41 \times 10^{22} \text { atones } \mathrm{Cl}
\end{aligned}
$$

Sucrose example

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}
$$

molar Equalities

$$
\frac{12 \text { mole } C}{1 \text { mole } C_{12} H_{22} O_{11}} \quad \frac{22 \text { mole } H}{1 \text { mole } C_{12} H_{22} O_{11}} \quad \frac{11 \text { mole } O}{1 \text { mole } C_{12} H_{22} O_{11}}
$$

Nickel Coin Experiment

Activity 14 - Mole Worksheet

Name \qquad
Section \qquad Date \qquad

Questions and Problems

Solve the following problems. Your final answer should include the correct number of significant figures and the units. Use scientific notation if the answer is greater than 1000 or less than 1. Note: Make sure you have the correct chemical formula before doing any calculations. You will need a periodic table for this exercise; make sure to show all your work.

1. A sample of mercury (II) bromide weighs 7.56 g .
a. What is the molar mass of mercury (II) bromide?
b. How many moles are in this sample?
2. What is the mass of 0.81 mol of Ammonium carbonate?
3. A sample of Chlorine gas contains 8.25 moles. (Remember that the formula for chlorine gas is Cl_{2}.)
a. How many molecules of chlorine are in the sample?
b. How many chlorine atoms are in the sample? (Remember that each chlorine molecule, Cl_{2}, consists of 2 chlorine atoms.)
4. Calculate the percent by mass of barium in barium sulfate.
5. What is the mass of 4.2×10^{23} molecules of carbon dioxide?
6. Use the equation below to solve the following problems:
$2 \mathrm{KMnO}_{4}+16 \mathrm{HCl} \longrightarrow 5 \mathrm{Cl}_{2}+2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
a. How many moles of HCl are required to react completely with 1.00 mole of KMnO_{4} ?
b. How many moles of chlorine will be produced by 25.0 moles of KMnO_{4} assuming that an excess of HCl is present?
c. How many moles of water will be produced if $40 . \mathrm{g}$ of HCl are completely reacted with excess potassium permanganate?
d. What is the maximum mass of manganese(II) chloride that will be produced if $40 . \mathrm{g}$ of HCl are completely reacted with excess Potassium permanganate?
7. A water solution of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ has a density of $1.67 \mathrm{~g} / \mathrm{mL}$ and is 75 percent $\mathrm{H}_{2} \mathrm{SO}_{4}$ by mass. How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are contained in $500 . \mathrm{mL}$ of this solution?
8. Cobalt chloride $\left(\mathrm{CoCl}_{2}\right)$ exists as a hydrate (has non-covalently bound waters of hydration) with a molecular mass of 237.93. Prolonged heating can drive off the waters of hydration. A 54.8 g sample of the hydrate was heated for 15 minutes, cooled and reweighed. The residual mass was found to be 33.2 g . Calculate the number of water molecules associated with each CoCl_{2} in the hydrate

mole Bridge Ratios Can be Subscripts within a farmula

$$
\frac{\varepsilon x}{\mathrm{Hg}_{g} \mathrm{Br}_{2}} \quad \frac{\text { I mole } \mathrm{Hg}}{\text { Imole } \mathrm{Hg} \mathrm{Br}_{2}} \text { or } \frac{2 \text { mole } \mathrm{Br}}{1 \text { mole } \mathrm{HgBr}_{2}}
$$

molar ratios
Mole Bridge Ratios Can be Coefficients in a balanced chemical Equation.
mar ratios

$$
\begin{aligned}
& 2 \mathrm{KMnO}_{4}+16 \mathrm{HCl} \longrightarrow 5 \mathrm{Cl}_{2}+2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+8 \mathrm{H}_{2} \mathrm{O} \\
& \frac{16 \text { mole } \mathrm{HCl}}{2 \text { mole } \mathrm{KMnO}} \quad \frac{8 \text { mole } \mathrm{H}_{2} \mathrm{O}}{16 \text { mole } \mathrm{HCl}} \\
& 5 \text { mole } \mathrm{Cl}_{2}=2 \text { mole } \mathrm{KCl} \\
& \frac{5 \text { mole } \mathrm{Cl}_{2}}{2 \text { mole } \mathrm{KCl}} \text { or } \frac{2 \text { mole } \mathrm{KCl}}{5 \text { mole } \mathrm{Cl}_{2}}
\end{aligned}
$$

[^0]: ${ }^{1}$ Adapted from: Waterman, E. L. Chemistry: Small-Scale Chemistry Laboratory Manual; Addison-Wesley/Prentice-Hall, Inc.: Upper Saddle River, New Jersey, 2002; pp 59-62.

